Personalizar preferências de consentimento

Utilizamos cookies para ajudar você a navegar com eficiência e executar certas funções. Você encontrará informações detalhadas sobre todos os cookies sob cada categoria de consentimento abaixo.

Os cookies que são classificados com a marcação “Necessário” são armazenados em seu navegador, pois são essenciais para possibilitar o uso de funcionalidades básicas do site.... 

Sempre ativo

Os cookies necessários são cruciais para as funções básicas do site e o site não funcionará como pretendido sem eles. Esses cookies não armazenam nenhum dado pessoalmente identificável.

Bem, cookies para exibir.

Cookies funcionais ajudam a executar certas funcionalidades, como compartilhar o conteúdo do site em plataformas de mídia social, coletar feedbacks e outros recursos de terceiros.

Bem, cookies para exibir.

Cookies analíticos são usados para entender como os visitantes interagem com o site. Esses cookies ajudam a fornecer informações sobre métricas o número de visitantes, taxa de rejeição, fonte de tráfego, etc.

Bem, cookies para exibir.

Os cookies de desempenho são usados para entender e analisar os principais índices de desempenho do site, o que ajuda a oferecer uma melhor experiência do usuário para os visitantes.

Bem, cookies para exibir.

Os cookies de anúncios são usados para entregar aos visitantes anúncios personalizados com base nas páginas que visitaram antes e analisar a eficácia da campanha publicitária.

Bem, cookies para exibir.

Learning curves in robotic neurosurgery: a systematic review

Compartilhe ►

Learning curves in robotic neurosurgery: a systematic review

Nathan A Shlobin 1Jonathan Huang 2Chengyuan Wu 3

Affiliations expand

Abstract

The transition to performing procedures robotically generally entails a period of adjustment known as a learning curve as the surgeon develops a familiarity with the technology. However, no study has comprehensively examined robotic learning curves across the field of neurosurgery. We conducted a systematic review to characterize the scope of literature on robotic learning curves in neurosurgery, assess operative parameters that may involve a learning curve, and delineate areas for future investigation. PubMed, Embase, and Scopus were searched. Following deduplication, articles were screened by title and abstract for relevance. Remaining articles were screened via full text for final inclusion. Bibliographic and learning curve data were extracted. Of 746 resultant articles, 32 articles describing 3074 patients were included, of which 23 (71.9%) examined spine, 4 (12.5%) pediatric, 4 (12.5%) functional, and 1 (3.1%) general neurosurgery. The parameters assessed for learning curves were heterogeneous. In total, 8 (57.1%) of 14 studies found reduced operative time with increased cases, while the remainder demonstrated no learning curve. Six (60.0%) of 10 studies reported reduced operative time per component with increased cases, while the remainder indicated no learning curve. Radiation time, radiation time per component, robot time, registration time, setup time, and radiation dose were assessed by ? 4 studies each, with 0-66.7% of studies demonstrated a learning curve. Four (44.4%) of 9 studies on accuracy showed improvement over time, while the others indicated no improvement over time. The number of cases required to reverse the learning curve ranged from 3 to 75. Learning curves are common in robotic neurosurgery. However, existing studies demonstrate high heterogeneity in assessed parameters and the number of cases that comprise the learning curve. Future studies should seek to develop strategies to reduce the number of cases required to reach the learning curve.

Keywords: Artificial intelligence; Machine learning; Neurological surgery; Spine surgery; Stereotactic electroencephalography.