State-of-the-art imaging for glioma surgery

Compartilhe ►

he current standard for resection guidance in non-enhancing gliomas is T2 weighted or T2w-fluid attenuation inversion recovery magnetic resonance imaging (MRI), and in enhancing gliomas T1-weighted MRI with a gadolinium-based contrast agent. Other MRI sequences, like magnetic resonance spectroscopy, imaging modalities, such as positron emission tomography, as well as intraoperative imaging techniques, including the use of fluorescence, are also available for the guidance of glioma resection. The neurosurgeon’s goal is to find the balance between maximizing the EOR and preserving brain functions since surgery-induced neurological deficits result in lower quality of life and shortened survival.

Review Neurosurg Rev  2021 Jun;44(3):1331-1343. doi: 10.1007/s10143-020-01337-9. Epub 2020 Jun 30.

State-of-the-art imaging for glioma surgery

Niels Verburg 1 2Philip C de Witt Hamer 3Affiliations expand

Free PMC article

Abstract

Diffuse gliomas are infiltrative primary brain tumors with a poor prognosis despite multimodal treatment. Maximum safe resection is recommended whenever feasible. The extent of resection (EOR) is positively correlated with survival. Identification of glioma tissue during surgery is difficult due to its diffuse nature. Therefore, glioma resection is imaging-guided, making the choice for imaging technique an important aspect of glioma surgery. The current standard for resection guidance in non-enhancing gliomas is T2 weighted or T2w-fluid attenuation inversion recovery magnetic resonance imaging (MRI), and in enhancing gliomas T1-weighted MRI with a gadolinium-based contrast agent. Other MRI sequences, like magnetic resonance spectroscopy, imaging modalities, such as positron emission tomography, as well as intraoperative imaging techniques, including the use of fluorescence, are also available for the guidance of glioma resection. The neurosurgeon’s goal is to find the balance between maximizing the EOR and preserving brain functions since surgery-induced neurological deficits result in lower quality of life and shortened survival. This requires localization of important brain functions and white matter tracts to aid the pre-operative planning and surgical decision-making. Visualization of brain functions and white matter tracts is possible with functional MRI, diffusion tensor imaging, magnetoencephalography, and navigated transcranial magnetic stimulation. In this review, we discuss the current available imaging techniques for the guidance of glioma resection and the localization of brain functions and white matter tracts.

Keywords: Brain functionality; Extent of resection; Glioma; Imaging; Neurosurgery.