Surgery for gliomas involving the left inferior parietal lobule: new insights into the functional anatomy provided by stimulation mapping in awake patients

Compartilhe ►

Surgery for gliomas involving the left inferior parietal lobule: new insights into the functional anatomy provided by stimulation mapping in awake patients

Journal of Neurosurgery, Volume 0, Issue 0, Page 1-10, Ahead of Print.

Igor Lima Maldonado, M.D., Sylvie Moritz-Gasser, S.T., Nicolas Menjot de Champfleur, M.D., Luc Bertram, M.D., Gérard Moulinié, M.D., and Hugues Duffau, M.D., Ph.D.

Object

Surgery in the left dominant inferior parietal lobule (IPL) is challenging because of a high density of somatosensory and language structures, both in the cortex and white matter. In the present study, on the basis of the results provided by direct cerebral stimulation in awake patients, the authors revisit the anatomofunctional aspects of surgery within the left IPL.

Methods

Fourteen consecutive patients underwent awake craniotomy for a glioma involving the left IPL. Intraoperative motor, sensory, and language mapping was performed before and during the tumor removal, at both the cortical and subcortical levels, to optimize the extent of resection, which was determined based on functional boundaries. Anatomofunctional correlations were performed by combining the results of intraoperative mapping and those provided by pre- and postoperative MR imaging.

Results

At the cortical level, the primary somatosensory area (retrocentral gyrus) limited the resection anteriorly in all cases, at least partially. Less frequently, speech arrest or articulatory problems were observed within the parietal operculum (4 cases). The lateral limit was determined by language sites that were variably distributed. Anomia was the most frequent response (9 cases) at the posterior third of the superior (and/or middle) temporal gyrus. Posteriorly, less reproducible reorganized language sites were seldom observed in the posterior portion of the angular gyrus (2 cases). At the subcortical level, in addition to somatosensory responses due to stimulation of the thalamocortical pathways, articulatory disturbances were induced by stimulation of white matter in the anterior and lateral part of the surgical cavity (11 cases). This tract anatomically corresponds to the horizontal portion of the lateral segment of the superior longitudinal fascicle (SLF III). Deeper and superiorly, phonemic paraphasia was the main language disturbance (12 cases), elicited by stimulation of the posterosuperior portion of the arcuate fascicle. All these eloquent structures were surgically preserved. Despite slight cognitive disorders (working memory, writing, or calculation) in 6 cases, no patient retained a severe or a moderate postoperative deficit (except one with right hemianopia [mean follow-up 41.8 months]). Resection was total or near total in 9 patients and partial in 3 cases.

Conclusions

To the authors’ knowledge, this is the first series dedicated to the surgery of gliomas involving the left IPL. Interestingly, a certain degree of interindividual variability was observed in the distribution of the cortical maps, especially for language. Therefore, it is suggested that no rigid pattern of resection can be considered within the left IPL, and that surgery in this region should be performed in awake patients to adapt the tumor removal to individual functional limits. Nonetheless, several landmarks have been regularly identified, especially at the subcortical levels (SLF III and arcuate fascicle); a better knowledge of these functional tracts could be helpful to optimize functional outcomes.
Original Page: http://thejns.org/doi/abs/10.3171/2011.5.JNS112?ai=ru&mi=0&af=R