Outcome of no resection after long-term subdural electroencephalography evaluation in children with

Journal of Neurosurgery: Pediatrics, Volume 8, Issue 3, Page 269-278, September 2011.

Elia M. Pestana Knight, M.D., Tobias Loddenkemper, M.D., Deepak Lachhwani, M.D., Prakash Kotagal, M.D., Elaine Wyllie, M.D., William Bingaman, M.D., and Ajay Gupta, M.D.

Object

The aim of this study was to identify the reasons for and predictors of no resection of the epileptogenic zone in children with epilepsy who had undergone long-term invasive subdural grid electroencephalography (SDG-EEG) evaluation.

Methods

The authors retrospectively reviewed the consecutive medical records of children (< 19 years of age) who had undergone SDG-EEG evaluation over a 7-year period (1997–2004). To determine the predictors of no resection, the authors obtained the clinical characteristics and imaging and EEG findings of children who had no resection after long-term invasive SDG-EEG evaluation and compared these data with those in a group of children who did undergo resection. They describe the indications for SDG-EEG evaluation and the reasons for no resection in these patients.

Results

Of 66 children who underwent SDG-EEG evaluation, 9 (13.6%) did not undergo subsequent resection (no-resection group; 6 males). Of these 9 patients, 6 (66.7%) had normal neurological examinations and 5 (55.6%) had normal findings on brain MR imaging. Scalp video EEG localized epilepsy to the left hemisphere in 6 of the 9 patients and to the right hemisphere in 2; it was nonlocalizable in 1 of the 9 patients. Indications for SDG-EEG in the no-resection group were ictal onset zone (IOZ) localization (9 of 9 patients), motor cortex localization (5 of 9 patients), and language area localization (4 of 9 patients). Reasons for no resection after SDG-EEG evaluation were the lack of a well-defined IOZ in 5 of 9 patients (4 multifocal IOZs and 1 nonlocalizable IOZ) and anticipated new permanent postoperative neurological deficits in 7 of 9 patients (3 motor, 2 language, and 2 motor and language deficits). Comparison with the resection group (57 patients) demonstrated that postictal Todd paralysis in the dominant hand was the only variable seen more commonly (χ2 = 4.781, p = 0.029) in the no-resection group (2 [22.2%] of 9 vs 2 [3.5%] of 57 patients). The no-resection group had a larger number of SDG electrode contacts (mean 126. 5 ± 26.98) as compared with the resection group (100.56 ± 25.52; p = 0.010). There were no significant differences in the demographic data, seizure characteristics, scalp and invasive EEG findings, and imaging variables between the resection and no-resection groups.

Conclusions

Children who did not undergo resection of the epileptogenic zone after SDG-EEG evaluation were likely to have normal neurological examinations without preexisting neurological deficits, a high probability of a new unacceptable permanent neurological deficit following resection, or multifocal or nonlocalizable IOZs. In comparison with the group that underwent resection after SDG-EEG, a history of Todd paralysis in the dominant hand and arm was the only predictor of no resection following SDG-EEG evaluation. Data in this study will help to better select pediatric patients for SDG-EEG and to counsel families prior to epilepsy surgery.

http://thejns.org/doi/abs/10.3171/2011.6.PEDS10303?ai=3f6&mi=3ba5z2&af=R



Categories: Uncategorized

Tags:

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: